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Introduction

¢ Recently, radio-frequency heating for a number of alternates has received new
attention.

— High harmonic fast wave (HHFW) heating on NSTX, Pegasus.
— Lower hybrid current drive for current profile control on MST.
— Rotamak drive for the UW FRC program.

— Fast wave heating for NCSX (although ICRH and ECH has been utilized
for years in stellarators),

— Current and rotation drive in the UCLA ET experiment.
¢ RF heating of higlfp alternates is one of the most challenging areas.

— ST, RFP, and FRC.
+ HHFW is one of the first forays into RF heating of a Highiternate.

+ Here we look at HHFW heating, and new possibilities for the stellarator and

FRC.
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High Harmonic Fast Wave Heating and Current Drive
Introduction

¢ HHFW heating as realized on NSTX utilizes a conventional fast wave rf
antenna at a “conventional” frequency - 30 MHz.

+ However, low magnetic field, high density (=low Alfven velocity) in an
Spherical Torus favor fast wave heating at mghmalizedfrequency
— Modest y/v,, for strong electron Landau damping.

— Very large k -- for similar parameters kor the fast wave is an
order of magnitudéarger in NSTX than was the case in TFTR.

— Strong per-pass damping, even if the damping decrgreemadial
wavelengths small. Lots of wavelengths!

=>Most of the conclusions on HHFW should carry over to other
high-beta alternates, notably the RFP.
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High Harmonic Fast Wave Heating and Current Drive

¢ Some features of HHFW heating in an ST
— Power deposition igenerallynot sensitive t@/Q,.

» The H fundamental resonance would enter the high field-side
edge in NSTX for B-(0) >0.4 T.

» The X2, resonance at 1T could play arole at 0.6T.

— Poor focussing (except at very I@sand/or low plasma current).
Wave trajectory is strongly affected by poloidal field.

» Access to the axis requires very IBywery low plasma current.
— Electron damping ialwaysstrong.
— lon damping is appreciable for>'1 keV.

» Kp; ~ 1 for T~ 50 eV, for typical NSTX densities.
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HHFW electron and ion damping

Electron damping is strong for HHFW in an ST.

+ (Conventional) fast wave damping decrement due to electrons:
Im(kg) O(w/ <>v%mmmm|mm

whereg = (w/kvy,). For constang,
» Im(ky) ~wn32 T, B3
— M. Ono has shown that in the highegime that Im(k) U n,.

¢ The density, and electron temperature in NSTX should eventually be
similar to L-mode discharges in DIII-D and TFTR.

¢ The toroidal magnetic field in NSTX is 5 - 10 x (or more) lower than
DIlI-D, TFTR.

— Strong electron damping for the HHFW is a consequence of the low
Alfven velocity and high beta inan ST. &111—.



High per-pass damping in NSTX even for startup plasmas

Te(0) = 350 eV, Tj(0) = 300 eV, ne(0) =3.0x 1019 m-3. B [B%
92% deuterium, 2% hydrogen, 1% carbon.
Launched k|| = 8 m-1 at 30 MHz (Nj; = 12.5).

Particle absorption % 46.35 total
1) 46.17 on electrons 2) 0.00 on
— Deut.3) 0.18 on Hyd.

I 4) 0.00 on Carb.
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For higherf3 plasmas stronger electron absorption is expected
to result in off axis power deposition and current drive

Predictions from PICES

¢ At 5% plasmd3 the waves penetrate ¢ At 25% plasmd the waves are

into the plasma core. absorbed at r/a > 0.5.
¢ Driven current will be peaked on- & Driven current profile will be
axis. hollow - low /.
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Evidence of HHFW heating in NSTX has now been observed
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¢

High frequencyfast wave heating for NCSX

Long history of RF heating in stellarators.

But - heating requirements for NCSX are somewnhat different than for
conventional stellarators

— Startup not an issue: ohmic system will be available

— Modest current drive capability is a plus

QAS design provides for a more tokamak-like geometry

Field coil design favors rf launchers on the outboard equatorial plane

— Net result: rf heating scenarios are similar to low-field side launch
tokamak scenarios

Toroidal field range: 1 -2 T

Hydrogen majority plasmas

Hydrogen NBI

— Deposition on beam ions would enhance losses

Direct electron heating desirable &111—.



Outboard equatorial plane wave launch in NCSX resembles a
low field side launch in a tokamak
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High frequency fast wave (HFFW) heating for NCSX

An attractive, flexible heating scenario for NCSX is a close cousin of
HHFW heating.

NCSX will typically operate at moderately susceptibilty (/Q .~ 5)
Very high frequency fast waves can be strongly damped

High power, reliable, CW sources are available for frequencies > 300
MHz

Here we look at 350 MHz HHFW heating for NCSX
— Compact launchers, probably folded waveguide
— Isolators can be implemented at this frequency
» Reduces sensitivity of the system to changes in the plasma edge
— Current drive capability is significant
— Sources are typically CW, > 1 MW per tube
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350 MHz HHFW strongly absorbed in NCSX

% absorption per pass

350 MHz, n.(0) = 6 x 10'® m3 (parabolic®®), T,(0) = T,(0) = 2 keV, B, = 1.2T, 2%NBI H
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350 MHz, n (0) = 6 x 101 m-3 (parabolic®5),
T.(0) = T(0), N, = 6.8, B, = 1.2T, 2%NBI H
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HHFW absorption is strong over a wide range InBj
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RF heating for the FRC

¢ There has long been “RF” research into the FRC - the rotamak!

¢ Extension of rotamak current drive to a large FRC introduces new
physics:

— Cyclotron resonance. For a rotamak drivemgting < Qciequilibriumy

there will be a cyclotron resonance for the rotating field between the
separatrix and the field null.

» For a small rotamak driven @fy.ing > Qciequilibriumy NArmonics of
the ion cyclotron frequency may produce ion heating at Bigh

+ lon heating is desirable for an FRC.

— AXis encircling ion orbits may have a stabilizing effect on the tilt
mode.

— Fast ions on loss orbits would produce a radial electric field.
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FRC heating scenarios with fast and slow waves are possible

E=1

% T T -—--—--—--

¢ Fast waves would propagate cross-
field, into the core plasma.

. — Encounter multiple harmonics of
1 the bulk ion cyclotron resonance.

— Strong damping at high ion beta.
. — lon Bernstein wave generation.

: — Minority ion heating is also

. feasible.

¢ Slow waves would propagate along the
magnetic field, into a low field region.

— Magnetic beach.

¢ Either wave could be used to
effectively heat ions.
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Minority ion heating

Minority ion heating has long been used in tokamaks to create fast ion
populations.

Fast wave heating of a minority ion is a promising scenario for an FRC.
FRC magnetic geometfy high field side launch in a tokamak.

— Fast wave will mode convert to a slow wave.

— Strong heating of the minority ions, for a wide concentration range.
— Minority concentration controls fast ion temperature, density.

Intent is to form a hot, possibly axis encircling ion population.

— Target plasma requirements are modest compared to NBI.

A promising heating scenario is a heavy ion minofige] in a light ion
(H) majority plasma.
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Hot plasma dispersion relation for 10¢4e in H

Fast wave is strongly absorbed on the He-3 minority
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(E+8)

Absorption [%/m]

RF modeling of an FRC will benefit from the ST effort

Particle Absorption [%]:xxxeesx total (Dotted)

1)

9.07 on Electran

2) weve on HELIUM3

3)

0.00 on HYDROGEN

But it still ain’t easy.

Shown is an incompletely
converged result from METS.

— 1-Dintegral code  (D.
Smithe, MRC).

H(He3) case for an FRC

Power deposition is >90% on
the He3, with a FWHM ofl
cm.

— Calculation performed for
an FRC with =22 cm
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Induced plasma rotation

Hot, nonthermatHe ion population would probably be subject to
significant losses.

— Fast ion orbits large even in comparison to the ST.

Fast ions on orbits which intersect walls, flux conservers, or are
otherwise unconfined will produce a loss current.

— Would result in generation of a radial electric field.

— For@ ~ KT,eman the electric field would produce plasma rotation in
the FRC at M ~ 1.

Induced rotation via this mechanism observed in tokamaks.
— Proposed as rotation drive for the UCLA ET experiment.

ICRH could therefore result tcombinechot ion + rotational
stabilization.

— Ponderomotive stabilization may also be effective in an FRC.
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Summary

+ New techniques for RF heating of alternates are now under
Investigation or implementation.

— Physics is often distinct from tokamak rf heating.

¢ One of these techniques (HFFW), although it may be tested first in an
alternate (NCSX), could be attractive for large tokamaks.

— Under consideration for Ignitor.

¢ Other technigues (slow wave heating, ponderomotive stabilization)
which have not been experimentally investigated since the mirror
program may find application in the FRC.

»|nnovation in confinement concepts has led to
Innovation in RF heating techniques
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